Synthesis of (Z)-Homoallylic Alcohols and Homoprop-2-ynylic Alcohols via Palladium-catalysed Hydrogenolysis of Prop-2-ynylic Cyclic Carbonates

Suk-Ku Kang,* Dong-Chul Park, Dong-Gyu Cho, Jea-Uk Chung and Kyung-Yun Jung Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

The decarboxylation-hydrogenolysis of prop-2-ynylic cyclic carbonates which have an internal acetylenic bond with ammonium formate in the presence of a catalytic amount of [Pd(acac) ${ }_{2}$] and $\mathrm{Bu}_{3} \mathrm{P}$ afforded (Z)-homoallylic alcohols or homoprop-2-ynylic alcohols depending on the reaction conditions, however, hydrogenolysis of terminal prop-2-ynylic cyclic carbonates gave homoallylic alcohols; using (Z)-homoallylic alcohol $\mathbf{2 b}$ as a chiral synthon, the male sex pheromone of the pyralid moth Aphomia gularis has been synthesized.

Optically active (Z)-homoallylic and homoprop-2-ynylic alcohols are versatile chiral synthons in organic synthesis. In the literature, stereoselective synthesis of (Z)-homoallylic alcohols by addition of crotylstannanes to aromatic aldehydes has been reported. ${ }^{1}$ We report here a convenient one-pot synthetic method for the highly stereoselective preparation of (Z)-homoallylic alcohols 2 and homoprop-2-ynylic alcohols 3 utilizing palladium-catalysed selective hydrogenolysis, ${ }^{2,3}$ details of which are shown in Scheme 1 and Table 1.

3
Scheme 1 Reagents and conditions: i, $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ (4 equiv.), $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]-\mathrm{Bu}_{3}{ }_{3} \mathrm{P}$ (cat.), PhH , reflux; ii, $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ (1 equiv.), $\left[\mathrm{Pd}(\mathrm{acac})_{2}-\mathrm{Bu}_{3} \mathrm{P}\right.$ (cat.), PhH , room temp. (MPM $=p$-methoxyphenylmethyl)

The internal prop-2-ynylic cyclic carbonate 1a reacted with 4 equiv. of ammonium formate in the presence of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ (acac = acetylacetonate) and $\mathrm{Bu}_{3} \mathrm{P}$ as catalysts in benzene at reflux for 3 h to afford the (Z)-homoallylic alcohol 2 a in 76% yield, the structure of which was confirmed by ${ }^{1} \mathrm{H}$ NMR (300 MHz) coupling constants of the olefinic protons (entry 1). It is presumed that Pd-catalysed decarboxylation-hydrogenolysis gives the homoprop-2-ynylic alcohol 3a as an intermediate (checked by TLC), which is subsequently reduced with excellent stereoselectivity ($>99 \%$) to the (Z)-homoallylic alcohol 2a by ammonium formate as a hydrogen donor in the presence of Pdcatalyst. ${ }^{4}$ As indirect evidence for the intermediary of alcohol 3a, the reaction of the carbonate 1a with 1 equiv. of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and $\mathrm{Bu}^{\mathrm{n}}{ }_{3} \mathrm{P}$ afforded the homoprop-2-ynylic alcohol 3a in 93% yield (entry 2). \dagger It is notable that under the same conditions, with benzene as solvent, stirring at room temperature afforded 3a in 97% yield (entry 3). This conversion was applied to the prop-2-ynylic cyclic carbonate 1 lb and thus the (Z)-homoallylic alcohol 2b and the homoprop-2-ynylic alcohol 3b were obtained (entries 4 and 5).

In contrast to the internal prop-2-ynylic cyclic carbonate, decarboxylation-hydrogenolysis of the terminal prop-2-ynylic carbonate 1c, ${ }^{5}$ with 2 equiv. of ammonium formate in the presence of a catalytic amount of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and $\mathrm{Bu}_{3}{ }_{3} \mathrm{P}$ in tetrahydrofuran (THF) at reflux for 30 min , provided the
homoallylic alcohol 2 c as the sole product (entry 6). \ddagger Presumably, the allenic alcohol 4 and the homoprop-2-ynylic alcohol 3c are the intermediates. As indirect evidence for this, treatment of 1 c with 1 equiv. of ammonium formate in the presence of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and $\mathrm{Bu}_{3} \mathrm{P}$ in THF at reflux provided mixtures of the allenic alcohol 4 and the homoprop-2-ynylic alcohol 3c (Scheme 2; entry 7).§ It is notable that the reaction of

Scheme 2 Reagents and conditions: i, $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ (1 equiv.), [Pd(acac) $\left.{ }_{2}\right]-\mathrm{Bu}_{3}{ }_{3} \mathrm{P}$ (cat.), THF, reflux, 30 min

1c with 1 equiv. of ammonium formate in the presence of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and $\mathrm{Bu}_{3} \mathrm{P}$ in benzene at room temperature afforded the allenic alcohol 4 as the major product (entry 8).

The results of the palladium-catalysed hydrogenolysis of prop-2-ynylic cyclic carbonates are summarized in Table 1.

Using (Z)-homoallylic alcohol 2b as a chiral synthon, the male sex pheromone of the pyralid moth Aphomia gularis 7^{6} was synthesized (Scheme 3). The homoallylic alcohol 2b was protected as methoxymethyl (MOM) ether and then the p methoxyphenylmethyl (MPM) protecting group was removed to furnish the alcohol 5, $[\alpha]_{\mathrm{D}}^{25}-24\left(c 0.46, \mathrm{CHCl}_{3}\right)$. The alcohol 5 was oxidized and Wittig olefination gave the α, β unsaturated ester $6(Z: E=1.3: 1)$. The (Z)- α, β-unsaturated ester 6 was subjected to deprotection, followed by lactonization

[^0]Table 1 Pd ${ }^{0}$-Catalysed hydrogenolysis of prop-2-ynylic cyclic carbonates

Entry	Substrate	$\begin{aligned} & \mathrm{HCO}_{2} \mathrm{NH}_{4} \\ & (\mathrm{~mol}) \end{aligned}$	Solvent	Conditions ${ }^{\text {a }}$		Product ${ }^{\text {b }}$	Yield (\%) ${ }^{\text {d }}$
				Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)		
1	1a	4	Benzene	80	3	2a	76
2	1a	1	THF	65	0.5	3a	93
3	1a	1	Benzene	25	2	3a	97
4	1b	4	Benzene	80	3	$\mathbf{2 b}{ }^{\text {c }}$	74
5	1b	1	Benzene	80	0.2	3b	86
6	1c	2	THF	65	0.5	2 c	82
7	1c	1	THF	65	0.5	$\begin{aligned} & \mathbf{4}+\mathbf{3 c} \\ & (1: 1) \end{aligned}$	93
8	1c	1	Benzene	25	2	$\begin{aligned} & 4+3 c \\ & (5.92: 1) \end{aligned}$	97

${ }^{a}$ All the reactions were run in the presence of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right](5 \mathrm{~mol} \%)$ and $\mathrm{Bu}^{\mathrm{n}}{ }_{3} \mathrm{P}(5 \mathrm{~mol} \%) .{ }^{b}[\alpha]_{\mathrm{D}}^{25}$ Values in $\mathrm{CHCl}_{3}: \mathbf{2 a},-4.4(c 4.6) ; \mathbf{3 a},-10.7(c 1.5)$; $\mathbf{2 b},-2.4(c 2.3) ; \mathbf{3 b},-8.0(c 3.0) ; \mathbf{2 c},-6.6(c 2.1) .{ }^{b}$ The selectivity was checked by GLC analysis of the acetate of $\mathbf{2 b}$ using a Hewlett-Packard 5880 GC system [column: ultra-2 (5% pheugl), $0.2 \times 12 \mathrm{~m}$ oven temp. $180-280^{\circ} \mathrm{C}$, carrier gas. $\mathrm{He} 0.6 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The retention time of the acetate of 2 b was $7.15 \mathrm{~min} .{ }^{d}$ Yields are isolated yields.

Scheme 3 Reagents and conditions: i, MOMCl, $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}, 0^{\circ} \mathrm{C} \longrightarrow$ room temp., $2 \mathrm{~h}(85 \%$); ii, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}(18: 1), 30 \mathrm{~min}(96 \%)$; iii, $(\mathrm{COCl})_{2}$, dimethyl sulfoxide (DMSO), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; iv, $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}$ (30% overall); v, trifluoroacetic acid (TFA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{H}_{2} \mathrm{O}(10: 1)(80 \%)$
to afford $(4 R, 2 Z, 6 Z)$-nona-2,6-dien-4-olide, $7,[\alpha]_{\mathrm{D}}^{25}-160(c$ $\left.0.2, \mathrm{CHCl}_{3}\right)\left\{\text { lit., }{ }^{6}[\alpha]_{\mathrm{D}}^{25}-162\left(c 0.650, \mathrm{CHCl}_{3}\right)\right\}^{*}{ }^{*}$

Experimental

Typical Procedures.-Preparation of 2a. [Pd(acac) $)_{2}$] and $\mathrm{Bu}_{3}{ }_{3} \mathrm{P}(5 \mathrm{~mol} \%)$ were mixed in a $1: 1$ ratio in dry benzene (5 cm^{3}) to form a pale yellow solution. Then prop-2-ynylic cyclic carbonate 1 a ($303 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dry benzene ($5 \mathrm{~cm}^{3}$) was added followed by ammonium formate ($2.52 \mathrm{mg}, 4.0 \mathrm{mmol}$) and the mixture was stirred for 3 h at reflux. The benzene was evaporated and then the residue was separated by SiO_{2} column chromatography (EtOAc-hexanes, $1: 3, R_{\mathrm{f}} 0.60$) to afford alcohol 2a ($199 \mathrm{mg}, 76 \%$), $[\alpha]_{\mathrm{D}}^{25} \dagger-4.4\left(c 4.6, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} \ddagger\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.30(6 \mathrm{H}, \mathrm{m}), 2.05(2 \mathrm{H}$, m), $2.26(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{m}), 4.55$

* 7: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{t}, J 7), 2.04(2 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{m})$, $5.09(1 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{m}), 6.14(1 \mathrm{H}, \mathrm{dd}, J 6$ and 2.1$)$ and 7.45 ($1 \mathrm{H}, \mathrm{dd}, J 6$ and 1.6); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2950,2926,2850,1755,1450$, $1250,1240,1160,1100,830,740$ and 700.
$\dagger[\alpha]_{\mathrm{D}}$ Values are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$.
$\ddagger J$ Values are given in Hz .
$(2 \mathrm{H}, \mathrm{s}), 5.37(1 \mathrm{H}, \mathrm{dt}, J 11$ and 7.3$), 5.48(1 \mathrm{H}, \mathrm{dt}, J 11$ and 7.3$)$, $7.32(5 \mathrm{H}, \mathrm{s}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3400$ and $1620 ; m / z 262\left(\mathrm{M}^{+}\right)$and 91 (base peak) (Found: $\mathrm{C}, 77.5 ; \mathrm{H}, 10.0 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C , 77.86 ; H, 9.92%).

Preparation of $3 \mathrm{a} .\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$ and $\mathrm{Bu}_{3} \mathrm{P}(5 \mathrm{~mol} \%)$ were mixed in a $1: 1$ ratio in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ to form a pale yellow solution. Then prop-2-ynylic cyclic carbonate $1 \mathbf{1 a}(303 \mathrm{mg}, 1.00$ mmol) in dry benzene ($5 \mathrm{~cm}^{3}$) was added followed by ammonium formate ($63 \mathrm{mg}, 1.0 \mathrm{mmol}$) and the mixture was stirred for 2 h at room temperature. The THF was evaporated and the residue was separated by SiO_{2} column chromatography (EtOAc-hexanes, $1: 4, R_{f} 0.56$) to afford alcohol $3 \mathrm{a}(252 \mathrm{mg}$, $97 \%),[\alpha]_{\mathrm{D}}^{25}-10.7\left(c 1.5, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90$ ($3 \mathrm{H}, \mathrm{t}, J 7.1$), $1.32(4 \mathrm{H}, \mathrm{m}), 1.47(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{m}), 2.43$ $(2 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 6.7$), 3.61(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 4.0), $3.93(1 \mathrm{H}, \mathrm{m}), 4.58(2 \mathrm{H}, \mathrm{s})$ and $7.34(5 \mathrm{H}, \mathrm{s}) ; m / z 260\left(\mathrm{M}^{+}\right)$, $189(19 \%$), 91 (base peak) and 79 (11) (Found: C, 78.15; H, 9.3. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{C}, 78.46 ; \mathrm{H}, 9.23$).

Acknowledgements

Generous financial support by the Korea Science and Engineering Foundation (KOSEF)-the Organic Chemistry Research Center (OCRC) is gratefully acknowledged.

References

1 (a) C. Hull, S. V. Mortlook and E. J. Thomas, Tetrahedron Lett., 1987, 28, 5343; (b) H. Miyake and K. Yamamura, Chem. Lett., 1993, 1173.
2 J. Tsuji, T. Sugiura, M. Yuhara and I. Minami, J. Chem. Soc., Chem. Commun., 1986, 922.
3 T. Mandai, T. Matsumoto, M. Kawada and J. Tsuji, Tetrahedron Lett., 1993, 34, 2160.
4 Recently hydrogenation of alkynes using $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{NEt}_{3}$ in the presence of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]-\mathrm{Bu}_{3}{ }_{3} \mathrm{P}$ (ca.) to cis-alkenes was reported. See, K. Tani, N. One, S. Okamoto and F. Sato, J. Chem. Soc., Chem. Commun., 1993, 386.
5 S.-K. Kang, S.-G. Kim and D.-G. Cho, Tetrahedron: Asymmetry, 1992, 3, 1509.
6 Y. Miyashita and K. Mori, Agric. Biol. Chem., 1981, 45, 2521.

[^0]: $\dagger\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$ can be used instead of $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]$. \ddagger In our hands, using $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](5 \mathrm{~mol} \%)$ in THF at reflux did not furnish the product. However, with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in MeCN at reflux for 40 min , the product 2 c was obtained in 79% yield.
 \S Treatment of $\mathbf{1 c}$ with $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%), \mathrm{Bu}_{3} \mathrm{P}$ (5 $\mathrm{mol} \%$), $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ (1 equiv.) in THF at reflux for 30 min gave 4 and $3 c$ in a ratio of $1: 2.4$. Under the same conditions, with 2 equiv. of $\mathrm{HCO}_{2} \mathrm{NH}_{4}$, the reaction of 1 c gave the homoallylic alcohol 2 c in 73% yield.

