Synthesis of (Z)-Homoallylic Alcohols and Homoprop-2-ynylic Alcohols via Palladium-catalysed Hydrogenolysis of Prop-2-ynylic Cyclic Carbonates

Suk-Ku Kang,* Dong-Chul Park, Dong-Gyu Cho, Jea-Uk Chung and Kyung-Yun Jung Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

The decarboxylation-hydrogenolysis of prop-2-ynylic cyclic carbonates which have an internal acetylenic bond with ammonium formate in the presence of a catalytic amount of $[Pd(acac)_2]$ and Bu_3^P afforded (Z)-homoallylic alcohols or homoprop-2-ynylic alcohols depending on the reaction conditions, however, hydrogenolysis of terminal prop-2-ynylic cyclic carbonates gave homoallylic alcohols; using (Z)-homoallylic alcohol **2b** as a chiral synthon, the male sex pheromone of the pyralid moth *Aphomia gularis* has been synthesized.

Optically active (Z)-homoallylic and homoprop-2-ynylic alcohols are versatile chiral synthons in organic synthesis. In the literature, stereoselective synthesis of (Z)-homoallylic alcohols by addition of crotylstannanes to aromatic aldehydes has been reported.¹ We report here a convenient one-pot synthetic method for the highly stereoselective preparation of (Z)-homoallylic alcohols 2 and homoprop-2-ynylic alcohols 3 utilizing palladium-catalysed selective hydrogenolysis,^{2.3} details of which are shown in Scheme 1 and Table 1.

Scheme 1 Reagents and conditions: i, HCO_2NH_4 (4 equiv.), [Pd(acac)_2]-Buⁿ₃P (cat.), PhH, reflux; ii, HCO_2NH_4 (1 equiv.), [Pd(acac)_2-Buⁿ₃P (cat.), PhH, room temp. (MPM = p-methoxyphenylmethyl)

The internal prop-2-ynylic cyclic carbonate 1a reacted with 4 equiv. of ammonium formate in the presence of $[Pd(acac)_2]$ (acac = acetylacetonate) and $Bu_{3}^{n}P$ as catalysts in benzene at reflux for 3 h to afford the (Z)-homoallylic alcohol 2a in 76% yield, the structure of which was confirmed by ¹H NMR (300 MHz) coupling constants of the olefinic protons (entry 1). It is presumed that Pd-catalysed decarboxylation-hydrogenolysis gives the homoprop-2-ynylic alcohol 3a as an intermediate (checked by TLC), which is subsequently reduced with excellent stereoselectivity (>99%) to the (Z)-homoallylic alcohol 2a by ammonium formate as a hydrogen donor in the presence of Pdcatalyst.⁴ As indirect evidence for the intermediary of alcohol **3a**, the reaction of the carbonate **1a** with 1 equiv. of $[Pd(acac)_2]$ and Buⁿ₃P afforded the homoprop-2-ynylic alcohol 3a in 93% yield (entry 2).[†] It is notable that under the same conditions, with benzene as solvent, stirring at room temperature afforded 3a in 97% yield (entry 3). This conversion was applied to the prop-2-ynylic cyclic carbonate 1b and thus the (Z)-homoallylic alcohol 2b and the homoprop-2-ynylic alcohol 3b were obtained (entries 4 and 5).

In contrast to the internal prop-2-ynylic cyclic carbonate, decarboxylation-hydrogenolysis of the terminal prop-2-ynylic carbonate 1c,⁵ with 2 equiv. of ammonium formate in the presence of a catalytic amount of [Pd(acac)₂] and Buⁿ₃P in tetrahydrofuran (THF) at reflux for 30 min, provided the homoallylic alcohol 2c as the sole product (entry 6).‡ Presumably, the allenic alcohol 4 and the homoprop-2-ynylic alcohol 3c are the intermediates. As indirect evidence for this, treatment of 1c with 1 equiv. of ammonium formate in the presence of $[Pd(acac)_2]$ and Bu^n_3P in THF at reflux provided mixtures of the allenic alcohol 4 and the homoprop-2-ynylic alcohol 3c (Scheme 2; entry 7).§ It is notable that the reaction of

Scheme 2 Reagents and conditions: i, HCO_2NH_4 (1 equiv.), [Pd-(acac)_]-Buⁿ₃P (cat.), THF, reflux, 30 min

1c with 1 equiv. of ammonium formate in the presence of $[Pd(acac)_2]$ and Bu^n_3P in benzene at room temperature afforded the allenic alcohol 4 as the major product (entry 8).

The results of the palladium-catalysed hydrogenolysis of prop-2-ynylic cyclic carbonates are summarized in Table 1.

Using (Z)-homoallylic alcohol **2b** as a chiral synthon, the male sex pheromone of the pyralid moth Aphomia gularis 7^6 was synthesized (Scheme 3). The homoallylic alcohol **2b** was protected as methoxymethyl (MOM) ether and then the *p*-methoxyphenylmethyl (MPM) protecting group was removed to furnish the alcohol **5**, $[\alpha]_{D}^{25} - 24$ (c 0.46, CHCl₃). The alcohol **5** was oxidized and Wittig olefination gave the α,β -unsaturated ester **6** (Z: E = 1.3:1). The (Z)- α,β -unsaturated ester **6** was subjected to deprotection, followed by lactonization

^{† [}Pd₂(dba)₃]·CHCl₃ (5 mol%) can be used instead of [Pd(acac)₂].

[‡] În our hands, using $[Pd(PPh_3)_4]$ (5 mol%) in THF at reflux did not furnish the product. However, with $[Pd(PPh_3)_4]$ in MeCN at reflux for 40 min, the product **2c** was obtained in 79% yield.

[§] Treatment of 1c with $[Pd_2(dba)_3]$ -CHCl₃ (5 mol%), Buⁿ₃P (5 mol%), HCO₂NH₄ (1 equiv.) in THF at reflux for 30 min gave 4 and 3c in a ratio of 1:2.4. Under the same conditions, with 2 equiv. of HCO₂NH₄, the reaction of 1c gave the homoallylic alcohol 2c in 73% yield.

 Table 1
 Pd⁰-Catalysed hydrogenolysis of prop-2-ynylic cyclic carbonates

	Substrate	HCO2NH4 (mol)	Solvent	Conditions ^a			
Entry				Temp. (°C)	Time (h)	Product ^b	Yield (%) ^d
 1	 1a	4	Benzene	80	3	2a	76
2	1a	1	THF	65	0.5	3a	93
3	1 a	1	Benzene	25	2	3a	97
4	1b	4	Benzene	80	3	2b °	74
5	1b	1	Benzene	80	0.2	3b	86
6	1c	2	THF	65	0.5	2c	82
7	1c	1	THF	65	0.5	4 + 3c	93
8	1c	1	Benzene	25	2	(1:1) 4 + 3c (5.92:1)	97

^a All the reactions were run in the presence of $[Pd(acac)_2]$ (5 mol%) and Bu^a₃P (5 mol%).^b $[\alpha]_D^{25}$ Values in CHCl₃: **2a**, -4.4 (*c* 4.6); **3a**, -10.7 (*c* 1.5); **2b**, -2.4 (*c* 2.3); **3b**, -8.0 (*c* 3.0); **2c**, -6.6 (*c* 2.1).^b The selectivity was checked by GLC analysis of the acetate of **2b** using a Hewlett-Packard 5880 GC system [column: ultra-2 (5% pheugl), 0.2 × 12 m oven temp. 180–280 °C, carrier gas. He 0.6 cm³ min⁻¹. The retention time of the acetate of **2b** was 7.15 min.⁴ Yields are isolated yields.

Scheme 3 Reagents and conditions: i, MOMCl, $Pr_{2}^{i}NEt$, 0 °C \longrightarrow room temp., 2 h (85%); ii, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), $CH_{2}Cl_{2}$, $H_{2}O$ (18 : 1), 30 min (96%); iii, (COCl)₂, dimethyl sulfoxide (DMSO), $Et_{3}N$, $CH_{2}Cl_{2}$, -78 °C; iv, $Ph_{3}PCHCO_{2}Me$, MeOH, 0 °C, 5 h (30% overall); v, trifluoroacetic acid (TFA), $CH_{2}Cl_{2}$ - $H_{2}O$ (10:1) (80%)

to afford (4R,2Z,6Z)-nona-2,6-dien-4-olide, 7, $[\alpha]_D^{25} - 160$ (c 0.2, CHCl₃) {lit.,⁶ $[\alpha]_D^{25} - 162$ (c 0.650, CHCl₃)}.*

Experimental

Typical Procedures.—Preparation of **2a**. $[Pd(acac)_2]$ and Buⁿ₃P (5 mol%) were mixed in a 1:1 ratio in dry benzene (5 cm³) to form a pale yellow solution. Then prop-2-ynylic cyclic carbonate **1a** (303 mg, 1.00 mmol) in dry benzene (5 cm³) was added followed by ammonium formate (2.52 mg, 4.0 mmol) and the mixture was stirred for 3 h at reflux. The benzene was evaporated and then the residue was separated by SiO₂ column chromatography (EtOAc-hexanes, 1:3, R_f 0.60) to afford alcohol **2a** (199 mg, 76%), $[\alpha]_D^{25} \dagger - 4.4$ (c 4.6, CHCl₃); $\delta_H(300 \text{ MHz}; \text{CDCl}_3 \ddagger)$ 0.90 (3 H, t, J 7.0), 1.30 (6 H, m), 2.05 (2 H, m), 2.26 (2 H, m), 3.34 (1 H, m), 3.50 (1 H, m), 3.85 (1 H, m), 4.55

‡ J Values are given in Hz.

(2 H, s), 5.37 (1 H, dt, J 11 and 7.3), 5.48 (1 H, dt, J 11 and 7.3), 7.32 (5 H, s); $v_{max}(neat)/cm^{-1}$ 3400 and 1620; m/z 262 (M⁺) and 91 (base peak) (Found: C, 77.5; H, 10.0. $C_{17}H_{26}O_2$ requires C, 77.86; H, 9.92%).

Preparation of **3a**. [Pd(acac)₂] and Buⁿ₃P (5 mol%) were mixed in a 1:1 ratio in dry benzene (5 cm³) to form a pale yellow solution. Then prop-2-ynylic cyclic carbonate **1a** (303 mg, 1.00 mmol) in dry benzene (5 cm³) was added followed by ammonium formate (63 mg, 1.0 mmol) and the mixture was stirred for 2 h at room temperature. The THF was evaporated and the residue was separated by SiO₂ column chromatography (EtOAc-hexanes, 1:4, R_f 0.56) to afford alcohol **3a** (252 mg, 97%), [α]_B²⁵ - 10.7 (c 1.5, CHCl₃); $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.90 (3 H, t, J 7.1), 1.32 (4 H, m), 1.47 (2 H, m), 2.15 (2 H, m), 2.43 (2 H, m), 3.50 (1 H, dd, J 9.6 and 6.7), 3.61 (1 H, dd, J 9.6 and 4.0), 3.93 (1 H, m), 4.58 (2 H, s) and 7.34 (5 H, s); m/z 260 (M⁺), 189 (19%), 91 (base peak) and 79 (11) (Found: C, 78.15; H, 9.3. C₁₇H₂₄O requires C, 78.46; H, 9.23).

Acknowledgements

Generous financial support by the Korea Science and Engineering Foundation (KOSEF)-the Organic Chemistry Research Center (OCRC) is gratefully acknowledged.

References

- 1 (a) C. Hull, S. V. Mortlook and E. J. Thomas, *Tetrahedron Lett.*, 1987, **28**, 5343; (b) H. Miyake and K. Yamamura, *Chem. Lett.*, 1993, 1173.
- 2 J. Tsuji, T. Sugiura, M. Yuhara and I. Minami, J. Chem. Soc., Chem. Commun., 1986, 922.
- 3 T. Mandai, T. Matsumoto, M. Kawada and J. Tsuji, *Tetrahedron* Lett., 1993, 34, 2160.
- 4 Recently hydrogenation of alkynes using HCO₂H-NEt₃ in the presence of [Pd₂(dba)₃]-Buⁿ₃P (ca.) to *cis*-alkenes was reported. See, K. Tani, N. One, S. Okamoto and F. Sato, *J. Chem. Soc., Chem. Commun.*, 1993, 386.
- 5 S.-K. Kang, S.-G. Kim and D.-G. Cho, Tetrahedron: Asymmetry, 1992, 3, 1509.
- 6 Y. Miyashita and K. Mori, Agric. Biol. Chem., 1981, 45, 2521.

Paper 3/06391G Received 26th October 1993 Accepted 30th November 1993

^{* 7:} $\delta_{H}(300 \text{ MHz}, \text{CDCl}_{3})$ 0.96 (3 H, t, J 7), 2.04 (2 H, m), 2.50 (2 H, m), 5.09 (1 H, m), 5.36 (1 H, m), 5.60 (1 H, m), 6.14 (1 H, dd, J 6 and 2.1) and 7.45 (1 H, dd, J 6 and 1.6); $v_{max}(\text{neat})/\text{cm}^{-1}$ 2950, 2926, 2850, 1755, 1450, 1250, 1240, 1160, 1100, 830, 740 and 700.

[†] $[\alpha]_D$ Values are given in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$.